A novel method for quantifying 3D geometric distortion in MRI
Overview
QUASAR™ MRID3D is a lighter, larger and more efficient way to quantify MRI geometric distortion in 3D! Analysis is performed on images for MRgRT, simulation and diagnostic imaging applications.
Unlike other distortion analysis products, which only sample a few imaging planes, the QUASAR™ MRID3D Geometric Distortion Analysis System analyses the entire 3D volume in a single series acquisition.
The system uses a novel method based on 3D harmonic analysis of distortion by analysing the Boundary Distortion Vector Field derived from the location of known control points on the surface of the phantom. 3D Laplace Partial Differential Equations are used to calculate the entire 3D Distortion Vector Field.
The large, acrylic, and hollow boundary phantom features integrated feet and handles for fast and easy setup in MRI scanners and includes image analysis software with a built-in 3D DICOM Viewer and Region of Interest (ROI) selector permitting user analysis of smaller custom volumes.
MRID3D Phantom video
Benefits
Follows NEMA/MITA MS-12 →recommendations and IEC 62464-1 standards for highest accuracy and precision
Acquire T1 weighted 3D isotropic GRE scans at 3T under 5 minutes or at 1.5T as quick as 10 minutes
Uses a novel method for quantifying 3D geometric distortion in MRI based on 3D harmonic analysis
Features an XYZ orientation and scale cuboid containing fiducials channels to easily visualize the phantom isocentre
Contains 1,496 precisely machined fiducial markers uniformly distributed around the phantom surface boundary
Plus 6 precisely machined reference markers to detect image position when distortion is high or correction is off
Enables users to easily visualize analysis results and update visually informative charts, graphics and plots in real-time
Permits users to update statistical analysis in real-time within a user defined 3D region of interest
User selects 2 identical MR scans with opposite frequency encode polarities to compare B0 vs Gradient distortion
Software automatically locates fiducials, compares it against the truth and calculates the geometric distortion for QA analysis
Track results over time to identify patterns, prevent potential errors and make adjustments to improve patient care
Capable of exporting the entire 3D Distortion Vector Field (DVF) data into Microsoft Excel (.CSV) format
Save distortion measurement results in PDF format to share with physicist, MRI technician and radiation therapists
Designed for multiple QA applications including MRI-guided radiation therapy, MR simulation and diagnostic imaging
37cm x 32cm (W x L) phantom enables users to accurately simulate and QA treatment plans for a wide range of patient sizes
Phantom weighs 21 kg for easy and fast setup compared to similar sized water-based phantoms that weigh 41 kg or more
The removable end plate, XYZ cuboid and fiducial markers are delivered pre-filled with mineral oil for maintenance free use
The system never has to be drained or refilled and comes complete with analysis software and instructions for safe handling
Key Features
Phantom Design
Fast Acquisition
Patented Technology
Isocentre Detection
Fiducial Markers
Reference Markers
Feature-rich Graphics
Built-in 3D DICOM Viewer
Reverse Polarity Analysis
Automated Analysis
Trend Analysis
Export Results
Detailed Reports
Versatile Usage
Large 3D Volume
Hollow Phantom
Waterless Phantom
Complete System
A better phantom measurement technique for modern MRgRT applications.
The QUASAR™ MRID3D Phantom contains an array of 1,502 precisely machined mineral oil filled fiducial markers for accurate and robust position detection. The 3D spatial position of each control point, defined as the centroid of the closed end of each fiducial, is consistently fabricated to within 0.1 mm relative to the truth template derived from CAD data.
The fiducial markers with 18 mm uniform spacing conform to the NEMA MS-12 standard for precision, quantification and mapping of geometric distortion in Magnetic Resonance Imaging.
Conformance to recommendations on design and data acquisition by The Medical Imaging & Technology Alliance (MITA), a division of the National Electrical Manufacturers Association (NEMA), enables the QUASAR™ MRID3DPhantom to accurately measure MR image distortion at low and high field strengths, even under conditions of large distortion such as low bandwidth acquisitions with vendor distortion correction turned off.
Designed for geometric dimensional stability.
The temperature compensating oil expansion reservoirs maintain geometric dimensional stability of the phantom when temperature variations are experienced in use. This eliminates a potential source of measurement error commonly found in large conventional grid phantoms, and ensures safe, leak-proof shipping.
An XYZ orientation and scale cuboid insert, located at the centre of the phantom, is used to register a calibrated frame of reference and to facilitate auto pre-scanning 3 plane MR Image localisers.
Maintenance free and easy.
The physical dimensions of the phantom are 39.4 cm diameter by 39.1 cm long – with a hollow internal volume of ~25 litres, effectively removing 25 kg of weight relative to conventional solid fluid filled grid phantoms. At 21 kg the maintenance free phantom from Modus QA is half the weight of conventional solid fluid filled grid phantoms for lighter, convenient one-person setup.
The phantom comes pre-filled with high T1 weighted contrast mineral oil for faster 3D scanning and dielectric-resonance-free use at high 3T fields. The mineral oil is susceptibility matched to acrylic to render susceptibility artefact negligible around the control points.
Software that meets the demand for accuracy, speed, and efficiency.
The QUASAR™ MRID3D software application is designed with specific needs of MR medical physicists and clinical workflow in mind. Accuracy, speed, and efficiency of results, were primary considerations during the design process.
The application is optimized to run locally without any load or latency issues, which translates into less time waiting for cloud-based applications to generate 3D distortion vector fields or for a spinning wheel to stop spinning.
Algorithms that calculate the entire 3D Distortion Vector Field, automatically.
The robust software automatically identifies the location of the isocentre and control points in the acquired MR images of the phantom and uses a fully automated process to compare them against the truth to calculate the geometric distortion.
The geometric moment of distortion truth has arrived.
Sophisticated imaging processing techniques are automatically enabled to measure the distance between the locations of the fiducial markers in the distorted MR image and their known positions defined by the geometry of the phantom.
The characterisation and measurement results of the geometric distortion in MR images are displayed in 3-dimensions with unprecedented details and accuracy for QA analysis.
Found what you're looking for or need to discuss your requirements?
Call us today on +44 (0)1743 462694 or email us here
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-advertisement
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
CookieLawInfoConsent
1 year
Records the default button state of the corresponding category & the status of CCPA. It works only in coordination with the primary cookie.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Duration
Description
__atuvc
1 year 1 month
AddThis sets this cookie to ensure that the updated count is seen when one shares a page and returns to it, before the share count cache is updated.
__atuvs
30 minutes
AddThis sets this cookie to ensure that the updated count is seen when one shares a page and returns to it, before the share count cache is updated.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
_ga
2 years
The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gat_gtag_UA_5880072_1
1 minute
Set by Google to distinguish users.
_gid
1 day
Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
at-rand
never
AddThis sets this cookie to track page visits, sources of traffic and share counts.
CONSENT
2 years
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
uvc
1 year 1 month
Set by addthis.com to determine the usage of addthis.com service.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
loc
1 year 1 month
AddThis sets this geolocation cookie to help understand the location of users who share the information.
VISITOR_INFO1_LIVE
5 months 27 days
A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSC
session
YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt-remote-connected-devices
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt-remote-device-id
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt.innertube::nextId
never
This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requests
never
This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.