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Abstract
Atlas-based auto segmentation with OnQ rts® has been shown to deliver time-savings for the delineation of organs at risk in head and 

neck patients being treated with intensity-modulated radiotherapy. However, as the initial time to set up atlases can be high in busy 

departments the optimal number of atlas cases needed for auto-contouring was investigated. Using conformity index and mean distance 

to conformity to compare automatically generated with gold standard clinical contours, it was found that the majority of contours were 

unaffected by reducing the number of atlas cases from 30 to 10. The optimum number of atlas cases, however, was considered to be 20 

due to the reduction in accuracy of the mandible, larynx and brain, below this level.
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Delineation of contours remains the one part of radiotherapy that is 

completely manual in the majority of centres and therefore the potential 

for time-saving is huge,1 being estimated to range from 23 %2 to 41 %.3 

One of the additional benefits of auto-contouring is the reduction in inter-

observer variation, which in general is not quantified in radiotherapy. Balik 

et al.,4 showed that, when comparing the demons and small deformation 

inverse consistent linear elastic (SICLE) algorithm for propagating 

contours between cone beam computed tomography (CBCT) scans of 

non-small cell lung carcinoma (NSCLC) patients taken weekly, over 7 

weeks that the Dice similarity coefficient (DSC) for the two algorithms 

was similar to the DSC seen for manual contouring between different 

trained observers. This shows that all contours should be independently 

checked by a separate clinician.3,5 However, if atlas-based contours are 

computer generated, the need for the second clinician is replaced by 

one clinician checking the contours produced by the software:3 another 

potential manpower saving of an auto-contouring system.

Sharp et al.6 performed an overview of the current status of auto 

segmentation in clinical radiotherapy. One of the main findings of the 

paper was that the atlases used should be customised and department 

specific. The slow uptake in clinical use by centres that have purchased 

commercially available software products that perform atlas-based 

segmentation is in many cases linked to the need for atlases to  

be customised and department specific. The initial input of time to 

create customised atlases, knowing what will work and how many 

atlases are needed in the library is too much of a challenge to already 

over-stretched centres, despite the time savings of a fully operational 

system being well cited in the literature. 

One cancer centre that has embraced the use of atlas-based segmentation 

to outline the normal anatomy for all radical head and neck radiotherapy 

treatment plans is Queen Elizabeth Hospital (QEB), Birmingham, UK. 

Following on from research that showed that the use of OnQ rts (Oncology 

Systems Limited, UK) (one of a number of commercially available software 

products that can be used for atlas-based auto segmentation) could 

reduce outlining time by 36 minutes – from 90 down to 54 minutes – work 

has now been performed to establish the optimal number of atlases 

required in the atlas library for the contouring of head and neck structures 

and which structures are most affected by the number of atlases used. 

This work will be reported in this paper.

Background
OnQ rts is a stand-alone software product that has been designed for 

the display, evaluation, co-registration and fusion of medical images, 

auto-contouring of anatomical structures and display of radiation 

therapy dose distributions to aid in radiation therapy planning. The 

auto-contouring protocol uses atlas-based segmentation of CT image 

data and is available for the following anatomical sites: head and neck, 

male pelvis, and thorax.

The concept of atlas-based auto-contouring is to populate the software 

with a ‘library’ of prepared, contoured CT cases that act as a typical 
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range of gold standard template cases, from which the CT images 

and contours are mapped from an atlas case onto the new patient 

case. Any structures that exist in an atlas case will be mapped onto 

the new patient case. This usually includes organs at risk only, but may 

include target lymph node anatomy, and possibly standardised tumour 

volumes. The atlas library can be expanded and customised by saving 

approved volumes of interest (VOIs) from previous patient cases as 

new atlas files.

Several different approaches are commercially available, varying in 

precisely how data are chosen from the atlas library, how it is mapped 

to the patient case and how image processing is applied during the 

process. OnQ rts automatically selects the ‘best fit’ atlas case using 

a mutual information algorithm and the lateral and anterior/posterior 

digital reconstructed radiographs (DRRs) generated when a case/atlas 

is imported into the system. It then applies rigid image registration 

(RIR) and deformable image registration (DIR), plus an additional series 

of processes, to deform the atlas CT case and copy the deformed 

contours onto the new patient images. 

The RIR algorithm geometrically aligns the coordinate system of 

one dataset to the coordinate system of another by changing its 

transformation parameters (translation and rotation). The algorithm  

is based on an iterative technique, which calculates a global similarity 

measure between the two datasets.7 In OnQ rts, the similarity 

measure used is mutual information. Mutual information is a statistical  

measure that finds its roots in information theory. It is a measure of 

how much information one random variable contains about another. 

The mutual information (I) of two random variables A and B is defined 

in equation 1:

Where �A,B(a,b) is the joint probability of the random variables A and 

B, and �A(a) and �B(b) are the marginal probabilities of A and B, 

respectively. For images, the joint and the marginal probabilities can be 

approximated by the normalised intensity histograms of each volume. 

The algorithm is based on a multi-resolution iterative technique where 

each iteration attempts to maximise the mutual information between 

the two volumes and thus their co-alignment.8

The DIR algorithm is a procedure where the moving image (MI) is 

transformed to match the static image (SI) by local warping of the MI. 

In this way, local differences between SI and MI can be eliminated 

and the two datasets can be elastically matched. It is again based 

on a multi-resolution iterative scheme where during each iteration a 

similarity measure is evaluated to estimate the co-alignment of the two 

volumes. The demons algorithm is used in the DIR procedure and it is 

an intensity-based DIR technique. 

The demons algorithm was introduced by Thirion9 who proposed that 

non-parametric non-rigid registration be considered as a diffusion 

process. The forces are inspired from optical flow equations and 

the method alternates between computation of the forces and 

regularisation by a simple Gaussian smoothing. This results in a 

computationally efficient algorithm compared with other non-rigid 

registration procedures. In OnQ rts, two variations of the Demons 

algorithm have been implemented. One deals with single modality 

problems and the other with multi-modality and is based on the point-

wise mutual information criterion.9–12

Method
At QEB, the OnQ rts atlas library is populated with 30 anonymised head 

and neck CT scans, each having 20 organs at risk (OARs) contoured and 

reviewed according to local protocols. OARs contoured in the atlases 

include: mandible, larynx, right and left parotid, brainstem, brain, spinal 

cord, right and left cornea, chiasm, pituitary, right and left cochlea, 

right and left optic nerve, right and left orbit, right and left lens. Eleven 

further CTs from previously treated patients were anonymised for use 

as test cases.

Atlas cases were numbered 1–30. All OAR contours were automatically 

generated 12 times on each test case using a range of different atlas 

library sizes and combinations as shown in Table 1. For example, for an 

atlas library with five atlases, six combinations of CT datasets (sets) were 

used to include all 30 atlas cases. The aim was to identify a point at which 

increasing atlas library size no longer improved agreement between the 

automatically generated contours and the clinical contours, which were 

used as a reference.

The contours generated by each atlas library were compared against the  

reference clinical outlines using the analysis module of OnQ rts. 

The two contour comparison metrics available in this module were 

conformity index (CI) and mean distance to conformity (MDC). The CI is 

the ratio of the volume of overlap between two outlines to the volume 

encompassing the full extent of both outlines. Therefore, two volumes 

that entirely overlap will have a CI equal to 1 and two volumes that are 

completely separate will have a CI equal to 0.13 The MDC is defined as 

the mean distance of each outlying voxel from the reference contour. 

This new metric was developed by Jena et al.13 as CI does not provide 

any information on differences in shape.

Results
For small, low-contrast structures, including the corneas, chiasm, 

pituitary and cochleae, there was no apparent trend with atlas library 

size, with a Pearson’s coefficient of 0.2 for the pituitary (minimum value) 

to 0.6 for the right cornea (maximum value) for CI. The relation of atlas 

number of MDC was in a similar range. The agreement for these contours 

was poor in all cases, with a mean CI of 0.11 ± 0.015 (mean ± SD) seen 

for the pituitary gland (range 0.09–0.13). The MDC indicates slightly better 

agreement with a mean of 4.4 ± 0.9 mm (range 1.9–5.3 mm).

 

The mandible, brain, parotids and spinal cord shown an improvement 

in accuracy of the automatically generated contours as the size of the 

atlas library increases, although there is little difference in the results 

when going from an atlas library of 20 to 30 patient scans. In fact for 

the left and right parotids, there is a large improvement in accuracy 

between one and five atlases and then only minimal improvements 

I(A,B) = ∑a,b�A,B(a,b)log (1)
�A,B(a,b)

�A(a)×�B(b)

Table 1: Table Showing the Atlas Library  
Size Used and the 12 Different Combinations 
of Atlases

Atlas Library 
Size          Atlas Case numbers
 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

1 1

5 1–5 6–10 11–15 16–20 21–25 26–30

10 1–10 11–20 21–30

20 1–20

30 1–30
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beyond that (see Figure 1). The Pearson coefficient is greater than 0.85 

for all the organs at risk in Figure 1, apart from the right parotid for 

which the value is 0.63. Similar results were seen when comparing the 

MDC for these structures. 

The variation in CI and MDC for optical structures are shown in Figures 

2 and 3. Figure 2 appears to show an improvement in accuracy of 

the automatically generated contours as the size of the atlas library 

increases for lens, globes and optic nerves, with the Pearson’s 

coefficient ranging from 0.71 (right lens) to 0.99 (left globe) for these 

structures. However, the plot of MDC (Figure 3) shows no trend 

between number of atlases and improved conformity, with Pearson’s 

coefficients all below 0.7.

Discussion
The change in number of atlases had the most influence on the 

automated contours for the brain, larynx and mandible, with the 

metrics showing improvements in accuracy as atlas size was increased 

up to 20 cases. Initial atlas selection matches the DRR from the current 

case to the DRRs of each atlas case, identifying the best match using a 

mutual information algorithm. Since the position of the brain and larynx 

are closely related to local bony anatomy, it could be expected that the 

range of the available atlas cases may affect these structures. Good 

results were seen for the automated cord contours, regardless of the 

atlas chosen, most likely due to the effectiveness of the relevant post 

processing tasks.

For small, low-contrast structures, the results were not as good. This 

is in agreement with Isambert et al.14 who found that for atlas-based 

auto segmentation in the brain, the DSC was low for structures with a 

volume smaller than 7cm3. In some cases, the metrics indicated a better 

result when a smaller range of atlases was available. This suggests that 

optimal atlas selection is not made for these structures. The accuracy 

for optical structures with atlas size varies. Automated contours for the 

lens and globes were good, possibly reflecting the strength of the post-

processing step for these structures.

The number of test cases used in this study was relatively low due to the 

time constraints of performing the work while commissioning the system 

for clinical use. This is a limitation of the study, although we believe it 

provides useful knowledge when commissioning similar systems.

Conclusion
These results indicate that 20 is an optimal number of atlases to have 

in the library for auto-contouring head and neck anatomy. If the number 

of atlases was reduced to 10, most structures would remain unaffected 

but it may impact on the quality of contours generated for the larynx 

and mandible.

The selection of atlas cases plays an important role in the quality of 

contours produced, as the impact of increasing the numbers of atlas 

cases appears to focus primarily on structures whose position is 

closely linked to the bony anatomy that drives atlas selection. The use 

of post processing reduces variation in the accuracy of the contours 

produced, regardless of the original atlas case selected. Additional 

work is planned to evaluate the optimal atlas size for pelvic anatomy. ■

Figure 1: Variation in Mean Conformity Index 
with Atlas Library Size

The error bars indicate the range of conformity index seen when different atlas sets 
were used. LT = left; RT = right.
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Figure 2: Variation of Mean Conformity Index 
with Atlas Library Size for Optical Structures

The error bars indicate the range of conformity index seen when different atlas sets 
were used. LT = left; RT = right.
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Figure 3: Variation of Mean Distance to 
Conformity with Atlas Library Size for  
Optical Structures

The error bars indicate the range of mean distance to conformity (MDC) seen when 
different atlas sets were used. RT = left; RT = right.
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